

    
      Navigation

      
        	
          index

        	
          next |

        	cachemagic 1 documentation 
 
      

    


    
      
          
            
  
Welcome to the Django-Cache-Magic Documenation

Table of Contents:



	Introduction
	Temporal Caching

	Instance Caching

	Related Objects Caching

	Thundering Herd Protection





	Examples

	Temporal Caching
	Using in model methods





	Instance Caching
	Reading From Cache

	Instance Cache Keys

	Cache Timeouts

	Caveats





	Related Object Caching
	Introduction

	Reading From Cache

	Cache Keys

	Cache Timeouts and Multicache





	Thundering Herd Protection
	Usage













          

      

      

    


    
         Copyright 2011-2014, Noah Silas, Nathaniel Tucker.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	cachemagic 1 documentation 
 
      

    


    
      
          
            
  
Introduction

CacheMagic addresses the most common scenarios for caching and cache
invalidation: temporal caching, instance caching, related objects
caching, and thundering herd protection.


Temporal Caching

This is like memoizing an expensive operation. Usually something that doesn’t need to be super-fresh,
and aggregates many objects - making invalidation difficult or impossible.:

@cached
def my_expensive_call(arg1, arg2):
    return do_other_things(arg1) * arg2








Instance Caching

This is the practice of caching individual model instances. CacheMagic provides
a CacheController that you can attach to models to cause automatic caching and
invalidations.

class Model(django.models.Model):
    cache = cachemagic.CacheController()
    field = django.models.TextField()

Model.objects.get(pk=27)    # hits the database
Model.cache.get(27)         # Tries cache first








Related Objects Caching

Having fetched an instance of a model, a frequent database operation is to
find all the instances of another model that are related to your instance via
foreign keys. You can attach a RelatedCacheController to your model to enable
automatic caching and invalidation of these relations.

instance = Model.cache.get(pk=27)
related_things = instance.things_set.all()  # hits the database
related_things = instance.cache.things_set  # Tries cache first





The RelatedCacheController will automatically detect and cache objects related
to the model it resides on by ForeignKeys, ManyToManyFields, and
OneToOneFields.




Thundering Herd Protection

Any caching will be useless when a cache key expires and thousands of requests try to recompute the value
at the same time. CacheMagic provides a cache backend for redis that prevents this problem by designating
only one client to recompute the value while others simply read the existing cache value.

CACHES['default'] = {
    'BACKEND': 'cachemagic.cache.RedisHerdCache',
    'LOCATION': ':'.join([REDIS_HOST, str(REDIS_PORT), '0']),
    'OPTIONS': {
        'PASSWORD': REDIS_PASSWORD,
    },
}











          

      

      

    


    
         Copyright 2011-2014, Noah Silas, Nathaniel Tucker.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	cachemagic 1 documentation 
 
      

    


    
      
          
            
  
Examples

The example model defines a person with a name.

class Person(models.Model):
    name = models.CharField(max_length=64)

    cache = RelatedCacheController()

    def __unicode__(self):
        return self.name

class Book(models.Model):
    title = models.CharField(max_length=64)
    author = models.ForeignKey(Person)









          

      

      

    


    
         Copyright 2011-2014, Noah Silas, Nathaniel Tucker.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	cachemagic 1 documentation 
 
      

    


    
      
          
            
  
Temporal Caching

Cached is a simple decorator that can be applied to any function to cache
results. By default it uses the arguments as a key, but both the key
and timeout can be customized.:

from django.db import models
from cachemagic.decorators import cached

@cached
def do_expensive_operation(thing, other):
    return [other(item) for item in MyModel.objects.where(a=thing)]






Using in model methods

In most cases you should use an object’s primary key as the cache key
instead of serializing the entire object.:

from django.db import models
from cachemagic.decorators import cached

class Model(models.Model):
    field1 = IntegerField()
    field2 = TextField()

    @cached(key=lambda self: self.pk, timeout=180)
    def get_my_related_things(self):
        return [other(item) for item in self.related_things.select_related()]











          

      

      

    


    
         Copyright 2011-2014, Noah Silas, Nathaniel Tucker.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	cachemagic 1 documentation 
 
      

    


    
      
          
            
  
Instance Caching

The CacheController works by listening for the post_save and post_delete
signals that the model it is attached to will emit when you alter an instance.
This allows it to automatically keep cached instances up to date!

from django.db import models
from cachemagic.controller import CacheController

class Model(models.Model):
    field1 = IntegerField()
    field2 = TextField()

    cache = CacheController()






Reading From Cache

You can use the cache controller like a very simple manager: currently only
the .get(pk) operation is supported. This will try to get and return the
model instance from cache. In the event that the key does not have a cache
entry, the value is read from the database using the model’s default manager.
The result is placed into the cache before being returned to the caller.

obj = Model.cache.get(pk=933)





Just like objects.get(), cache.get() may raise a Model.DoesNotExist exception.
A DoesNotExist marker is placed in cache when an instance is deleted or an
attempt to fetch a non-existent row is made, preventing subsequent requests
against the cache from hitting DB or returning stale data.




Instance Cache Keys

The default CacheController creates keys based on your model’s app, name and
primary key, separated by colons:
app_label:model_name:primary_key. This should present you with a unique
key for each object.


Note

This can be problematic if your model uses a primary key that can contain
whitespace and you are using memcached as your cache backend. One possible
solution is to provide a key generation function that hashes the key (see
example below). You can also use a cache backend like Django NewCache [https://github.com/ericflo/django-newcache]
that automatically hashes the key.




Overriding Cache Key Generation

You can subclass CacheController and override the make_key function to
customize your cache keys.


	CacheController.make_key(self, pk)

	Called to generate all cache keys for this controller. You can access the
model class that this controller is attached to through self.model.




Examples

import hashlib

class HashCacheController(CacheController):
    """ Hashes the cache key. This creates keys that are difficult to type
        by hand, but can avoid problems related to key content and length.
    """
    def make_key(self, pk):
        key = super(HashCacheController, self).make_key(pk)
        return hashlib.sha256(key).hexdigest()

class ModelVersionCacheController(CacheController):
    """ Versions each cache key with the model's CACHE_VERSION attribute.
        Updating the model's version when altering it's schema will
        effectively invalidate all cached instances.
    """
    def make_key(self, pk):
        model_version = getattr(self.model, 'CACHE_VERSION', 0)
        key = ':'.join([super(HashCacheController, self), model_version])
        return key












Cache Timeouts

The default cache timeout is one hour. You can specify a number of seconds
to timeout as the timeout parameter in the CacheController constructor. :

cache = CacheController(timeout=(60 * 60 * 24 * 7)) # timeout in one week






Overriding the default timeout

If you find yourself frequently overriding the default timeout, you can
subclass the CacheController and set a DEFAULT_TIMEOUT attribute:

class LongCacheController(CacheController):
    # timeouts longer than 30 days are treated as absolute timestamps by
    # memcached; that makes 30 days the largest naive value we can use.
    DEFAULT_TIMEOUT = 60 * 60 * 24 * 30








Multicache

Starting in Django 1.3 you could define multiple cache backends. If you want
to tie the instance cache for a model to a backend other than ‘default’, you
can pass the name of the backend you want to use into the controller
constructor as the keyword argument backend.






Caveats

CacheMagic relies on the post_save and post_delete signals to keep your cache
up to date. Performing operations that alter the database state without
sending these signals will result in your cache becoming out of sync with your
database.


Note

Do not use queryset.update() with models that have a CacheController
attached! Your cache will not be updated.









          

      

      

    


    
         Copyright 2011-2014, Noah Silas, Nathaniel Tucker.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	cachemagic 1 documentation 
 
      

    


    
      
          
            
  
Related Object Caching


Introduction

Given a model instance, one frequent database query is to get instances of
another model that are related. This is commonly accomplished with the use
of a Foreign Key.

We will be using the following models as examples throughout this document:

from django.db import models
from cachemagic.controllers import RelatedCacheController

class Person(models.Model):
    name = models.CharField(max_length=200)

    cache = RelatedCacheController()

class Book(models.Model):
    author = models.ForeignKey(Person, related_name='books')
    title = models.CharField(max_length=200)
    published_date = models.DateTimeField()

    class Meta:
        default_ordering = ('-published_date')





Suppose you have an authorship view, displaying all of the books that a
given author has published. The view would typically look something like
this:

def authorship(request, author_id):
    try:
        author = Person.objects.get(pk=author_id)
    except Person.DoesNotExist:
        raise Http404("No such person")
    books = author.books.all()
    return render(
        request,
        {'author': author, 'books': books},
        'authorship.html'
    )





This pattern will invoke two database queries: one to fetch a Person, and
one to fetch the books with a foreign key relationship to the author. We can
use the cachemagic features to try the cache first.

author = Person.objects.get(pk=author_id)   # database query
author = Person.cache.get(pk=author_id)     # cached query

books = author.books.all()                  # database query
books = author.cache.books                  # cached query








Reading From Cache

Given an instance of an object with a RelatedCacheController, all of the
attributes on the instance to fetch related objects are mirrored on the
controller. If the instance has a .thing_set and a RelatedCacheManager
assigned to cache, then instance.cache.thing_set will return the
same values as list(instance.thing_set.all()).


Note

Related object caches return lists of instances, not querysets. This means
that you don’t need to put the .all() on the end, but also that you can
not apply django queryset operations like .filter() or
.select_related() on the result.






Cache Keys

A cache key for the instance is obtained by calling the same make_key(pk)
function described in Instance Cache Keys. The key for the related
objects is the instance key, appended with the related name of the collection.

author = Person.objects.get(pk=1)   # get an instance of a Person in the sample_app
author.cache.books                  # cache key is sample_app:Person:1:books








Cache Timeouts and Multicache

The RelatedCacheController accepts the same timeout
and backend arguments as CacheController.

cache = RelatedCacheController(
        timeout=(60 * 60 * 24 * 7),     # timeout in one week
        backend='my_app_cache'),        # use the cache backend named
                                        # 'my_app_cache' in settings.py
    )











          

      

      

    


    
         Copyright 2011-2014, Noah Silas, Nathaniel Tucker.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          previous |

        	cachemagic 1 documentation 
 
      

    


    
      
          
            
  
Thundering Herd Protection

When your cache keys expire, there is a time window before the new value is recomputed where many clients will
not be able to retrieve any result. This will cause a huge load to database backends. More can be found here:
http://en.wikipedia.org/wiki/Thundering_herd_problem

To eliminate the problem, CacheMagic provides a redis backend that stores extra metadata about expiry time.
This allows one client to realize the key will expire soon and tell the others continue using the old value until
it is recomputed.


Usage

To setup the protection, simply use the RedisHerdCache backend provided.
Here is an example configuration:

CACHES['default'] = {
    'BACKEND': 'cachemagic.cache.RedisHerdCache',
    'LOCATION': ':'.join([REDIS_HOST, str(REDIS_PORT), '0']),
    'OPTIONS': {
        'PASSWORD': REDIS_PASSWORD,
    },
    'VERSION': 0,
}











          

      

      

    


    
         Copyright 2011-2014, Noah Silas, Nathaniel Tucker.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	cachemagic 1 documentation 
 
      

    


    
      
          
            

Index



 




          

      

      

    


    
         Copyright 2011-2014, Noah Silas, Nathaniel Tucker.
      Created using Sphinx 1.3.1.
    

  _static/minus.png





_static/comment.png





_static/plus.png





_static/up.png





_static/down-pressed.png





_static/comment-bright.png





_static/file.png





_static/comment-close.png





_static/down.png





_static/ajax-loader.gif





search.html


    
      Navigation


      
        		
          index


        		cachemagic 1 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2011-2014, Noah Silas, Nathaniel Tucker.
      Created using Sphinx 1.3.1.
    

  

_static/up-pressed.png





